

LA-UR-21-27113

Approved for public release; distribution is unlimited.

Title: Investigation of Radius of Curvature Measurements using Laser

Interferometry

Author(s): Archuleta, Isaiah Xavier

Valdez, Mario Orlando Schrold, Matthew Leo Klade, DAndre Leigh

Intended for: LANL Student Symposium

Issued: 2021-07-21

Investigation of Radius of Curvature Measurements using Laser Interferometry

Isaiah Archuleta, Mario Valdez, Matthew Schrold & D'Andre Klade Metrology Program & Calibration Laboratory

Date: 8/3/21-8/4/21

LA-UR-

Overview

- Introduction/Goals
- Literature Review
- Approach
- Data Collection
- Data Analysis
- Conclusion
- Future Work

Introduction/Goals

- Develop an application using a ZYGO Verifire for calibration of artifacts where the measurand is defined as a Radius of Curvature (ROC)
- Validate the measurements through an uncertainty analysis
- Determine if the calibration method is a viable alternative/option for calibration outside of current standard methodologies

Applications

- Calibration:
 - Artifacts that have a measurand defined as an ROC
 - Optics that have a measurand defined as an ROC
 - Freeform optics
 - Artifacts that have a measurand defined as radius/diameter
 - CMM calibration/qualifications spheres used for probe calibration
- Form error measurements and residual error mapping
 - Roundness
 - Cylindricity
 - Height deviations from nominal surface

Literature Review

- ROC measurements using laser interferometry is not a new technique and has been around since 1978¹.
 - A fundamental parameter of optical surfaces
- The literature covers areas such as:
 - Refractive index of air corrections due to non-ideal environmental conditions (extrinsic)^{2,3}
 - Intrinsic error sources^{4,5,6}
 - Error and uncertainty analysis^{1,7}
- The literature is sparse relative to applications in calibration laboratories outside of Primary Standards laboratories (e.g., SNL-NM) and National Measurement Institutes (e.g., NIST, NPL, PRB, etc.)

Approach: Current Setup at MP&CL

- Measurement system housed in Dimensional Calibration Section
- Measurement Capabilities:
 - Measures surface size and form of reflective materials such as optics, and transmitted wavefront of transparent optics and imaging systems
- Computer Requirements:
 - High-performance Dell PC, Windows 10, 64-bit, Mx[™] software
- Mounting Configuration: Horizontal

Measurand Definitions

Experimental Testing

- Measurands:
 - 12mm ROC, ceramic calibration artifact
 - 24mm ROC, quartz calibration artifact
- Testing setup:
 - 3 appraisers/operators
 - 30 measurements per artifact per operator
 - 90 measurements total for each artifact
- Refractive index of air corrections are applied to the laser measurements to accommodate the non-standard temperatures and relative humidity
- Predictable biases are accounted for and corrections are applied to measurement data
- Results were reported in "Reported Value ± Expanded Uncertainty"

12mm artifact

22mm artifact

Residual Map & 3D

- Each measurement results in a map of the residual errors and a ROC value
 - Geometry and tilt is subtracted from measurement data
 - Aids in determining areas that show "irregularities"
- 3D representations show raw data with geometry, tilt and a better look at the "irregularities" such as scratches, dings, dents and manufacturing tool process marks

Measurement Uncertainty

- To validate the measurements, an uncertainty estimation was conducted in the form of a sensitivity analysis as recommended by the GUM⁸
- Statistical variability (Type-A) and known, predictable biases (Type-B) uncertainty sources make up the uncertainty model in the form of a combined standard variance (i.e., uncertainty squared, $u^2(y)$)
- Uncertainty sources are:
 - Measurement Process, s_p
 - Systematic Error, δ
 - Thermal Error, Δr

$$u^{2}(y) = u^{2}(s_{p}) + u^{2}(\delta) + u^{2}(\Delta r)$$

$$u^{2}(y) = \left(\frac{s_{\bar{r}}}{\sqrt{n}}\right)^{2} + \left(\frac{\bar{r} - r_{N}}{\sqrt{3}}\right)^{2} + \left(\frac{\bar{r}}{[1 + \alpha \Delta T]}\sqrt{\Delta T^{2}u^{2}(\alpha) + \alpha^{2}u^{2}(\Delta T)}\right)^{2}$$

$$u^{2}(y) = \left(\frac{s_{\bar{r}}}{\sqrt{n}}\right)^{2} + \left(\frac{\bar{r} - r_{N}}{\sqrt{3}}\right)^{2} + \left(\bar{r}\sqrt{\Delta T^{2}\left(\frac{0.1\alpha}{\sqrt{3}}\right)^{2} + \alpha^{2}\left(\frac{\Delta T}{\sqrt{2}}\right)^{2}}\right)^{2}, \quad \alpha \Delta T \ll 1$$

Results: 12mm Artifact

Results: 22mm Artifact

Tabulated Results

Table 1: Reported values and expanded uncertainties of 12mm artifact.

Operator	Reported Value	Expanded Uncertainty (@ k=2)
Appraiser 1	12.49632	0.00026
Appraiser 2	12.49569	0.00077
Appraiser 3	12.49617	0.00020

Table 2: Reported values and expanded uncertainties of 22mm artifact.

Operator	Reported Value	Expanded Uncertainty (@ k=2)
Appraiser 1	22.51584	0.00060
Appraiser 2	22.51362	0.00403
Appraiser 3	22.51567	0.00054

Conclusions

- A calibration process for ROC measurements was presented
 - The measurands under test were a 12mm and 22mm concave ROC artifact which were realized in environmentally-controlled room with a temperature deviation of ±1.0°C
 - Experimental testing was in-line with a repeatability study and predictable biases were accounted and the data was corrected
 - The measurement results were quantified through descriptive statistics and validated via an uncertainty estimation
- Preliminary testing showed that the current calibration process results are nearing the decision rule requirements (need to lower the statistical variations)
- Future work
 - Test the calibration process on known artifacts (e.g., CMM calibration spheres) that have calibration history
 - Develop tooling and calibration process for customer items that are currently calibrated by other means (e.g., 2D measuring machines)

References

- 1. L.A. Selberg, "Radius measurement by interferometry," *Optical Engineering*, vol. 31, no. 9, pp.1961-1966, 1992.
- 2. K.P. Birch and M.J. Downs, "Correction to the updated Edlen Equation for the refractive index of air," *Metrologia*, vol. 31, no. 4, pp.315-316, 1994.
- 3. P.E. Ciddor, "Refractive index of air: new equations for the visible and near infrared," *Applied Optics*, vol. 35, no. 4, pp. 1566-1573, 1996.
- 4. C. Ai and J.C. Wyant, "Effects of piezo transducer nonlinearity on phase shift interferometry," *Applied Optics*, vol. 26, no. 6, pp.1112-1116, 1987.
- 5. K. Creath, "Error sources in phase-measuring interferometry," *SPIE*, vol. 1720, pp. 428-435, 1992.
- 6. P.J. De Groot, "Vibration in phase-shifting interferometry," *The Journal of Optical Society of America*, vol. 12, no. 2, pp. 354-365, 1995.
- 7. T.L. Schmitz, A.D. Davies and C.J. Evans, "Uncertainties in interferometric measurements of radius of curvature," *Proceedings of SPIE*, 2001.
- 8. BIPM, "JCGM 100:2008 Evaluation of measurement data Guide to the expression of uncertainty in measurement," *BIPM*, Paris, 2008.

Questions

Thank you!

